Soal
1
∫ 2dx = ...
(a)x+C
(b)2x+C
(c)x2+C
(d)2+C
(e)0+C
Soal
2
∫ 3x2 + 2x + 1 dx = ...
(a)x3
+ x2 + x + C
(b)x3
+ 2x2 + x + C
(c)3x3
+ x2 + x + C
(d)3x3
+ 2x2 + x + C
(e)x3
+ x2 + C
Soal
3
(c)x3 + 2x2 + C
(d)x3 + 2x + C
(e)x3 + x + C
Soal
4
Soal
5
Soal 6
(a)3x3 + 3x2 + 4x + C
(b)3x3
+ 6x2 + +2x + C
(c)3x3
+ 6x2 + 4x + C
(d)9x3
+ 6x2 + 2x + C
(e)9x3
+ 6x2 + 4x + C
Soal
7
Soal 8
Jika
F’(x) = 3x2 + 4x + 2 dan F(0) = 2, maka F(x) = …
(a)x3
+ x2 + x
(b)x3
+ 2x2 + x
(c)x3
+ x2 + 2x
(d)x3
+ 2x2 + 2x + 2
(e)x3
+ x2 + 2x + 2
Soal
9
Soal
10
Materi Integral Dasar, Substitusi, Parsial
No comments:
Post a Comment