SOAL DAN PEMBAHASAN INTEGRAL DASAR DAN SUBSTITUSI (1)




Soal 1
∫ 2dx = ...

(a)x+C
(b)2x+C
(c)x2+C
(d)2+C
(e)0+C

Soal 2
∫ 3x+ 2x + 1 dx = ...

(a)x3 + x2 + x + C
(b)x3 + 2x2 + x + C
(c)3x3 + x2 + x + C
(d)3x3 + 2x2 + x + C
(e)x3 + x2 + C


Soal 3 








(c)x3 + 2x2 + C
(d)x3 + 2x + C
(e)x3 + x + C

Soal 4












Soal 5











Soal 6



(a)3x3 + 3x2 + 4x + C
(b)3x3 + 6x2 + +2x + C
(c)3x3 + 6x2 + 4x + C
(d)9x3 + 6x2 + 2x + C
(e)9x3 + 6x2 + 4x + C

Soal 7














Soal 8
Jika F’(x) = 3x2 + 4x + 2 dan F(0) = 2, maka F(x) = …

(a)x3 + x2 + x
(b)x3 + 2x2 + x
(c)x3 + x2 + 2x
(d)x3 + 2x2 + 2x + 2
(e)x3 + x2 + 2x + 2

Soal 9













Soal 10











Video Pembahasan


Materi Integral Dasar, Substitusi, Parsial


Pembahasan Matematika Bab Integral 1



Share:

No comments:

Post a Comment

Popular Posts

Followers

Program

Sitemap

Blog Archive